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We study numerically the scale-to-scale transfers of enstrophy and passive-tracer
variance in two-dimensional turbulence, and show that these transfers display
significant differences in the inertial range of the enstrophy cascade. While passive-
tracer variance always cascades towards small scales, enstrophy is characterized by
the simultaneous presence of a direct cascade in hyperbolic regions and of an inverse
cascade in elliptic regions. The inverse enstrophy cascade is particularly intense
in clusters of small-scales elliptic patches and vorticity filaments in the turbulent
background, and it is associated with gradient-decreasing processes. The inversion
of the enstrophy cascade, already noticed by Ohkitani (Phys. Fluids A, vol. 3, 1991,
p. 1598), appears to be the main difference between vorticity and passive-tracer
dynamics in incompressible two-dimensional turbulence.

1. Introduction
The dynamics of forced and dissipated two-dimensional incompressible flows is

described by the vorticity equation,

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
= F + D, (1.1)

where ω ≡ ∂v/∂x − ∂u/∂y is relative vorticity, u ≡ (u, v) is the fluid velocity,
(x, y) are spatial coordinates, t is time, and F and D represent forcing (vorticity
sources) and dissipation (vorticity sinks) respectively. Formally, the evolution of the
concentration of a passive-scalar tracer, θ , is described by the same equation that
governs vorticity dynamics. Unlike the linear advection of a passive tracer, however,
the dynamics of vorticity is strongly nonlinear as the fluid velocity u and vorticity
ω are related to each other. This makes vorticity an active tracer, i.e. a tracer that
feeds back on the advecting velocity field. Owing to this relationship, when forcing
and dissipation are absent there are two quadratic invariants for vorticity ω (energy,
E = (1/2L2)

∫
(u2 + v2) dx dy and enstrophy, Z = (1/2L2)

∫
ω2 dx dy, where L is

the domain size), while there is just one quadratic invariant for a passive tracer
θ (the variance of the tracer concentration, Θ = (1/2L2)

∫
θ2 dx dy). This leads

to fundamentally different dynamical properties for apparently identical evolution
equations (Babiano et al. 1987).

One important consequence of the difference between vorticity and passive tracers
is the ability of vorticity to self-organize into coherent vortices (McWilliams 1984,
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1990; Bracco et al. 2000b). In a sense, the problem of two-dimensional turbulence lies
in the self-organization of intense, spatially localized coherent vorticity concentrations
that induce strong correlations in the Fourier phases and make the turbulent field
dynamically inhomogeneous. Vortices have long-range effects and their influence
extends well into the background turbulence, largely determining its properties (Bracco
et al. 2000a; Pasquero, Provenzale & Babiano 2001; Elhmaidi, von Hardenberg &
Provenzale 2005).

Because velocity and passive-tracer concentration are not related to each other,
the above mechanism is absent in passive-tracer dynamics. However, if the vorticity
and the passive-tracer fields initially coincide, then both the enstrophy and passive-
tracer variance spectra evolve in the same way, since the initial correlation persists
at all times owing to the linearity of passive advection. If vorticity and passive
tracer are initially uncorrelated and the sources of enstrophy and scalar variance
are kept uncorrelated, then the absence of correlation persists at all times. In this
case, numerical simulations indicate that the slope of the enstrophy spectrum Zω(k)
is usually steeper that the Batchelor–Kraichnan (B-K) prediction k−1, owing to the
presence of coherent vortices. Conversely, the passive-tracer variance spectrum Zθ (k)
obeys the k−1 regime (Batchelor 1959; Kraichnan 1967; Batchelor 1969). When the
coherent vortices are artificially destroyed, the enstrophy spectrum becomes similar
to that of the passive tracer and both obey the k−1 self-similarity behaviour (Babiano
et al. 1987).

Careful numerical explorations have shown that the main differences between
vorticity and passive-tracer spectral-transfer fluxes take place in elliptic (vorticity-
dominated) regions (Babiano et al. 1987; Ohkitani 1991). These works suggested that
elliptic regions, related to the presence of coherent vortices, can affect the cascades
of enstrophy and passive-tracer variance in ways that are overlooked by standard
similarity theories.

The difference between active (vorticity) and passive tracer dynamics has been
further investigated by looking at the geometrical alignment of tracer gradients.
In two-dimensional turbulence, Protas, Babiano & Kevlahan (1999) numerically
confirmed that the production of vorticity gradients by stirring depends on the
relative orientation between the gradient itself and the compressional axis of the
rate-of-strain tensor (Weiss 1991). Kimura & Herring (2001) studied vortex filament
ejection following the gradient enhancement process for vorticity. More detailed
studies have considered both vorticity and passive scalars (Lapeyre, Klein & Hua
1999; Klein, Hua & Lapeyre 2000), and argued that the value of the Lagrangian
derivative of the tracer-gradient variance, which is related to the alignment process
and to the efficiency of the direct tracer-variance cascade, can be used as an indicator
to distinguish vorticity from passive tracers.

Later studies, however, raised questions on the existence of significant differences
in gradient alignment properties of active and passive tracers. The numerical analyses
discussed by Lapeyre, Hua & Klein (2001) showed that even though transient
differences are observed in the early stages of enstrophy and tracer-variance cascades,
the diagnostics based on the cascade efficiency cannot distinguish between passive
scalars and vorticity when turbulence is fully developed. Similar results are found
when considering either global averages or conditional averages restricted to elliptic
or hyperbolic regions in terms of the Okubo–Weiss (O-W) or Hua–Klein flow
segmentation criteria (Okubo 1970; Weiss 1991; Hua & Klein 1998). Dubos &
Babiano (2003) revisited this problem using conditional averages and considering the
Lagrangian derivative of the cascade efficiency, i.e. the second Lagrangian derivative
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of the tracer-gradient variance. Also in this case, the conclusion was that the enstrophy
and passive-tracer variance cascades seem to be very similar to each other.

The results reported above indicate an apparent inconsistency in our understanding
of vorticity and passive-tracer dynamics in vortex-dominated flows. On one hand,
when either initial or source-generated correlations between vorticity and passive
scalars are absent, the global spectra of enstrophy and passive-tracer variance are
significantly different. On the other hand, the overall local properties of the turbulent
cascades, as measured by tracer-gradient dynamics and orientation, seem quite similar.

A first observation is that tracer-gradient dynamics captures only small-scale
processes, and thus provides an incomplete picture of the transfer processes in
the inertial range. This is particularly important in two-dimensional flows where
the coherent vortices destroy the self-similarity and the dynamical homogeneity of
transfer dynamics (Babiano & Dubos 2005). Owing to the presence of coherent
structures, the dynamical transfers at intermediate scales in the inertial range do not
behave as expected from similarity theory. The purpose of the present contribution
is to revisit this question from a point of view that unifies small-scale analyses based
on gradient dynamics with diagnostics that are in principle sensitive to the dynamics
in the whole inertial range. We focus on the effective difference between vorticity and
passive tracers in terms of energy and enstrophy transfers at scales that are larger
than those captured by gradient dynamics.

2. Two-dimensional tracer-cascade diagnostics
2.1. Equations of motion

In the absence of energy sources and sinks and neglecting molecular diffusivity, the
evolution equations for a scalar T and its gradient, q = ∇ T , in a two-dimensional
incompressible flow are written as

∂T

∂t
+ u · q = 0, (2.1)

d

dt
q + A∗q = 0, (2.2)

where

A∗ =
1

2

[
s1 s2 + ω

s2 − ω −s1

]

denotes the transpose of the velocity-gradient matrix A,

s1 = −2
∂v

∂y
and s2 =

∂v

∂x
+

∂u

∂y
.

Equations (2.1) and (2.2) are linear if T = θ and nonlinear if T = ω.
In the case of vorticity, equation (2.2) cannot be solved analytically owing to the

dependence of ω, s1 and s2 on fluid velocity. In the case of a passive tracer, the
only difficulty in solving the linear problem (2.2) comes from the time dependence of
A∗. If we assume that the temporal evolution of A∗ is slow compared to that of q,
we can approximate equation (2.2) with an eigenvalue problem. The behaviour of q
then depends on whether the transpose of the velocity gradient has real or imaginary
eigenvalues. This is determined by the sign of the O-W (Okubo–Weiss) parameter

Q = s2
1 + s2

2 − ω2. (2.3)
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The sign of the O-W parameter (2.3) quantifies the topology of two-dimensional
turbulence and it divides the turbulent flow into two different dynamical regions:
elliptic regions where Q < 0, the eigenvalues are purely imaginary and tracer gradients
are expected to rotate without growing or decreasing; and hyperbolic regions where
Q > 0 (two real and opposite eigenvalues) and gradients grow exponentially. In
hyperbolic regions, tracer gradients are expected to align with the eigenvector of
maximum compression (Weiss 1991). Limitations of the O-W approach have been
discussed by Basdevant & Philipovitch (1994) and an extension based on considering
the eigenvalues of the acceleration-gradient tensor (the Hessian of pressure) has been
proposed by Hua & Klein (1998). On the other hand, the O-W parameter (2.3) is
a quantity that can be easily estimated, and it has a close relationship with the
Laplacian of pressure, Q = −4∇2p (Larcheveque 1993). For this reason, as well
as for consistency with previous work (Ohkitani 1991) and recent analyses of the
inverse energy cascade (Babiano & Dubos 2005), here we characterize the topology
of two-dimensional turbulence using the standard O-W parameter (2.3).

2.2. Cascade efficiency

The temporal evolution of tracer gradient, q, is determined by the rate-of-strain
tensor, S = 1

2
(A + A∗), which intensifies the gradient, and by vorticity, which

rotates the gradient direction. Using this decomposition, from (2.2) one can derive a
local indicator of the efficiency of the tracer cascade, measuring the production or
destruction of tracer-gradient variance:

σ ≡ d

dt
q2 = −2q∗ · S · q. (2.4)

The above equation shows that the production or destruction of tracer-gradient
variance depends on the angle between the tracer gradient and the compressional
axis of the rate-of-strain tensor S. The physical interpretation of σ in terms of a
cascade is simple: a positive value of σ indicates growth of gradient amplitude and
an intensification of the direct tracer cascade. Effective gradient production occurs in
hyperbolic regions, where Q > 0, whereas σ remains approximately zero in elliptic
domains where Q < 0. This behaviour has been clearly demonstrated by Klein et al.
(2000), using the concept of effective rotation (i.e. the rotation due both to vorticity
and to the rotation of the principal axes of the rate-of-strain tensor). However, those
results also indicated that the mean value of σ in elliptic domains can be positive.
Further analyses by Lapeyre et al. (2001) and Dubos & Babiano (2003) showed that
the mean value of σ vanishes in strong elliptic regions, but it can be significantly
larger than zero in weak elliptic regions, for either vorticity or passive tracers. This
behaviour is consistent with the presence of direct cascades of passive-tracer variance
and of enstrophy in elliptic regions.

The above results raise the question of whether a negative cascade efficiency,
which characterizes small-scale gradient-decreasing structures, has any dynamical
significance in the vorticity/passive-tracer problem. In the numerical investigations
that follow, we explore this issue and focus on the sign of first-order diagnostics (2.4)
to perform conditional statistics based on (2.3). To illustrate some of the dynamical
quantities that will be analysed in the following, in figure 1 we show two snapshots
of the instantaneous spatial distribution of cascade efficiency, σ , for vorticity (a)
and passive-tracer (b) variances. Operationally, the cascade efficiency is computed as
σ = −2q∗ · S · q from the results of the numerical simulations analysed in the present
work.
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Figure 1. Instantaneous spatial distribution of the cascade efficiencies, σ , for vorticity (a)
and passive-tracer (b) variances.

2.3. Transfer of tracer variance on larger scales

The cascade efficiency (2.4) is based on gradient dynamics and it unambiguously
captures the local transfer properties at the smallest length scales. However, the
definition of σ does not carry information on the character of the cascade on
larger length scales. To explore what happens on larger scales, we resort to the
use of statistics based on two-point tracer increments (Dubos & Babiano 2002). In
a cascade process, the contribution of structures at length scale l is traditionally
determined by looking at the magnitude of increments over the spatial separation
l. The tracer increment δT (x, l) at the position x in physical space is defined as
δT (x, l) = T (x + l/2) − T (x − l/2), and its magnitude is measured by δT 2. Both
quantities are functions of the independent (vector) variables x and l and they obey
an advection equation such as (2.1), with advection provided by the velocity increment
δu (x, l), defined analogously to δT (x, l).

Using incompressibility and the independence of x and l , Dubos & Babiano (2002)
showed that in the inviscid case the budget of tracer variance as a function of x and
l =‖ l ‖ is governed by the equation

∂

∂t

∮
δT 2 dφ

2π
+ ∇x ·

∮
δT 2U

dφ

2π
+

∂

l∂l
l

∮
δT 2δu‖

dφ

2π
= 0, (2.5)

where φ is the polar angle of l , δu‖ = δu(x, l) · l/l denotes the longitudinal velocity
increment, ∇x is the gradient operator with respect to x and U is the velocity averaged
over the positions (x + l/2) and (x − l/2).

The time evolution in (2.5) is due to the sum of two contributions: transport in
physical space with velocity U (second term) and scale-to-scale transfer with velocity
δu‖ (x, l) (third term). We focus on the latter term, and define the flux of tracer
variance (taken positive from large to small scales)

F (x, t; l) = − 1

2l
〈δT 2δu‖〉φ = − 1

2l

∮
δT 2δu‖

dφ

2π
, (2.6)

where 〈.〉φ indicates an average over the angle φ (see Dubos & Babiano (2002) for
a detailed discussion). The small-scale limit of the flux F is related to the alignment
properties described by (2.4), and the Taylor expansion of (2.6) gives (Dubos &
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Babiano 2002)

F (x, l) ≈ − l2

8
q∗ · S · q =

l2

16
σ. (2.7)

Note, however, that the full expression (2.6) holds also at larger length scales as its
validity extends throughout the inertial range. The spatial average of (2.6) defines the
mean tracer-transfer rate at length scale l,

εT (l) = 〈F (x, l)〉. (2.8)

For a self-similar cascade, εT (l) must be scale-independent in the inertial range,
as expected from the Kolmogorov–Batchelor–Kraichnan self-similarity theories. For
comparison, see Yaglom (1949) for the derivation of an analogous expression relating
the second-order moment of tracer increments to the third-order mixed moments of
longitudinal velocity and tracer increments in three-dimensional turbulence.

2.4. Enstrophy transfer rate and velocity increments

In the inertial range of the enstrophy cascade, the mean enstrophy transfer rate εω is
related to the third-order moment of the distribution of velocity increments (Lindborg
1999),

1
4
l3 εω =

〈(
l
l

· δu
)

(δu · δu)

〉
= 〈δu‖δu‖δu‖〉 + 〈δu‖δu⊥δu⊥〉 (2.9)

where the transverse velocity increment is defined as δu⊥ = δu × l/l and 〈.〉 indicates
an average on both the polar angle φ and space x.

Relationship (2.9) is in line with Batchelor’s result for homogeneous turbulence
(Batchelor 1953),

∇2〈u(x) · u(x + l)〉 = −〈ω(x)ω(x + l)〉 (2.10)

and it has been verified by Lindborg & Alvelius (2000). Since the averaging is
performed over all angles, the third-order moments present in equation (2.9) must
be independent of direction, and they fulfil the two-dimensional version of Landau’s
condition for isotropy (Landau & Lifshitz 1971; Lindborg 1999),

〈δu‖δu⊥δu⊥〉 =
l

3

d

dl
〈δu‖δu‖δu‖〉. (2.11)

Relationship (2.11) was numerically confirmed in both the energy and enstrophy
ranges of two-dimensional turbulence by Babiano & Dubos (2005).

Using (2.11), one finds from (2.9)

〈δu‖δu‖δu‖〉 = 〈δu‖δu⊥δu⊥〉 = 1
8
l3 εω, (2.12)

which, using (2.6) and (2.8) and dividing by l3, can be rewritten in the enstrophy
inertial range as

1

l2
〈δu‖δu‖δu‖〉

l
=

1

l2
〈δu‖δu⊥δu⊥〉

l
= −1

8

〈δω2δu‖〉
2l

. (2.13)

Relation (2.13) appears as a constraint on vorticity dynamics, owing to the presence
of the energy invariant, and it may be interpreted in a statistically steady enstrophy
inertial range as a budget relation between the direct enstrophy transfer towards small
scales (−〈δω2δu‖〉/2l) and an inverse transfer of energy to large scales (〈δu‖δu‖δu‖〉/l

and 〈δu‖δu⊥δu⊥〉/l) with a proportionality factor of 8/l2.
Expression (2.13) determines the relationship between the third-order moments of

the tranverse and longitudinal velocity increments and the scale-to-scale transfer of
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vorticity variance and it depends on the existence of the relationship (2.10) between u
and ω, which embodies the feedback of vorticity on velocity and the presence of the
energy invariant. The energy invariant can be seen as the spatial integral of vorticity,
since ω = ∂v/∂x − ∂u/∂y. Thus, the conservation of enstrophy corresponds to the
conservation of tracer variance, while the conservation of energy is unmatched in the
case of a passive tracer. Owing to this difference, the results discussed above do not
hold for a passive tracer θ and the scale-to-scale transfer 〈δθ2δu‖〉/2l. In this case, the
inverse energy cascade and the direct scale-to-scale transfer of passive-tracer variance
are not related to each other.

Expression (2.13) has been derived from a global average over the entire flow
domain (homogeneity assumption). The same expression does not necessarily hold
in selected dynamical sub-domains of the turbulent flow, as identified by conditional
averages based on the topological characteristics of the flow. For this reason, a
detailed topologically conditioned analysis can provide interesting information on the
local cascade structure, and it can help to assess whether the cascade properties of ω

in selected sub-domains differ from the global-mean behaviour (2.13).

3. Numerical procedure
We simulate tracer dynamics in forced–dissipated two-dimensional turbulence by

solving in parallel equation (2.1) for vorticity and for a passive tracer in a doubly
periodic domain with size 2π × 2π. Forcing F (vorticity or passive-tracer source)
is obtained by keeping constant the modulus of the Fourier mode at a selected
wavenumber kI . Dissipation D, for both vorticity and passive tracer, is obtained
as the sum of a large-scale linear friction and a small-scale dissipation. The former
is given by an inverse Laplacian and the latter is given by a eighth-order iterated
Laplacian (Babiano et al. 1987; Elhmaidi et al. 1993; Pasquero et al. 2001; Elhmaidi
et al. 2005).

Equation (2.1) is numerically solved by a standard pseudo-spectral scheme with
resolution 1728 × 1728 grid points. Initial conditions on ω and θ are provided by
two independent random fields. The modulus of the forcing wavenumber is set at
kI = (k2

x,I + k2
y,I )

1/2 = 40. In the initialization of the passive tracer, we ensure that
no initial correlation exists between θ and ω. During the numerical integration, the
passive-tracer concentration θ is forced at the wavenumber kθ

I = (40, 0) and vorticity
is forced at kω

I = (0, 40). Passive-tracer concentration and vorticity are dissipated in
the same way. After an initial transient, the system enters a regime of statistically
stationary forced and dissipated turbulence that is the focus of the present analysis. In
the statistically stationary turbulent regime, there is a well-developed direct enstrophy
cascade over an extended range of scales and the correlation between ω and θ remains
approximately zero (Babiano et al. 1987). The numerical resolution is sufficient to
study both large- and small-length-scale dynamics and extends the numerical study
performed long ago by Babiano et al. (1987), by allowing for the simultaneous
presence of enstrophy and energy cascade ranges.

In the following, we analyse the outputs of the numerical simulations for ω and
θ , separating the contributions of elliptic and hyperbolic domains (as defined by the
O-W criterion (2.3)) to the transfer dynamics. In addition to topological selection,
we occasionally refine the conditional statistics by adding a second constraint based
either on the value of the squared vorticity or on the sign of the first Lagrangian
derivative of the tracer-gradient variance (2.4), to identify the structures associated
with gradient growth and gradient decrease. One goal is to determine whether and
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where there are significant local differences from the globally averaged scale-to-scale
transfers. To this end, we focus on the third term in equation (2.5), and for each
length scale l we analyse the distribution of the (angle-averaged) flux Fω,θ (x, l) (2.6)
and of the conditionally averaged value of εω,θ (l), defined by (2.8).

The O-W parameter (2.3) is normalized as Q∗ = (s2
1 + s2

2 − ω2)/(s2
1 + s2

2 + ω2).
The quantity Q∗ has the same sign as Q, but its amplitude varies between −1
and +1. Whenever two-point statistics are used, conditional selection is performed
by imposing the selection constraint on both points. We thus define conditional
mean scale-to-scale transfers ε′

ω(l) and ε′
θ (l) by averaging (2.6) over regions where

(Q∗(x + l/2) < 0, Q∗(x − l/2) < 0) for what we call ‘elliptic transfers’, and on
regions where (Q∗(x + l/2) > 0, Q∗(x − l/2) > 0) for ‘hyperbolic transfers’. (For
conditional statistics, the angle average at any given length scale l is obtained
implicitly by averaging over different pairs of points with random orientations.) In
addition to the one-point cascade efficiency (2.4) and its positive σ+ (σ (x) > 0) or
negative σ − (σ (x) < 0) values, we also define the two-point cascade efficiencies σ+

l

(σ (x + l/2) > 0, σ (x − l/2) > 0) and σ −
l (σ (x + l/2) < 0, σ (x − l/2) < 0), in order

to select dynamical regions associated with gradient growth or gradient decrease as
a function of length scale l. Analogously, we analyse the third-order moments of
velocity increments entering (2.9)–(2.13) and the second-order vorticity and passive-
tracer structure functions which define the corresponding spectra.

4. Properties of the tracer cascades
4.1. Spectra and global spectral fluxes

Panels (a) and (b) of figure 2 show the tracer variance spectra Zω,θ (k) and the global
spectral fluxes Φω,θ (k) as a function of the radial wavenumber k ≡ (k2

x + k2
y)

1/2, in the
statistically stationary turbulent regime. The wavenumber has been normalized by
the forcing wavenumber kI . In panel (a) we show the compensated spectra, obtained
by multiplying the spectra by the wavenumber k. The B-K regime k−1 would thus
correspond to a flat spectral plateau.

The enstrophy and passive-tracer variance spectra behave similarly when k/kI is
sufficiently large. At smaller wavenumbers, the two spectra differ significantly from
each other. For wavenumbers k/kI less than about 5, the compensated passive-tracer
variance spectrum displays an approximate plateau, consistent with a direct tracer
cascade in the B-K sense. By contrast, the enstrophy spectrum is steeper than the B-K
prediction, as often observed in numerical simulations where strong coherent vortices
are present. According to Babiano et al. (1987), localness in physical space, associated
with energy conservation and the formation of coherent vortices, is responsible for
enstrophy spectral slopes larger than −1. No coherent vortices spontaneously form
in the passive-tracer distribution, and thus the passive-tracer spectrum remains closer
to the B-K prediction k−1. Figure 2(b) shows that the global spectral fluxes are
positive for k/kI > 1, consistent with the direct cascade of enstrophy and passive-
tracer variance. Here, both vorticity and passive-tracer fluxes display approximately
constant plateaux. The average value of the passive-tracer spectral flux at the plateau,
Φ0

θ , is slightly larger than that of vorticity, Φ0
ω. This small difference is, in fact, very

important, as will be seen from the following analysis.
For k/kI < 1, the enstrophy spectrum is dominated by the inverse cascade of

energy. Since there is no energy invariant for the passive tracer, no inverse cascade is
present in that case. As a result, the spectral density at k/kI < 1 is significantly lower
for passive tracer than for vorticity.
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Figure 2. (a) tracer spectra compensated by k−1; (b) tracer spectral fluxes. Spectra and
spectral fluxes are not normalized. Vorticity is indicated by continuous lines and passive tracer
by dotted lines.

Tracer-variance spectra are the Fourier transform of the second-order moments of
tracer increments, 〈δT 2(x, l)〉, also called the structure functions. Figure 3 shows the
vorticity and passive-tracer structure functions as a function of length scale, when
the spatial average is taken either on the entire flow domain or by excluding from
the averaging procedure all ‘elliptic’ increments where Q∗ < 0 at both x − l/2 and
x + l/2. The length scale is normalized by lI , where lI is the energy injection scale
(lI = π/kI ). Vorticity (circles) and passive-tracer (triangles) structure functions are
different when averaged over the whole domain, but they become similar to each other
when the average excludes elliptic regions. This confirms that the main differences
between vorticity and passive-tracer dynamics are found in elliptic regions, while
vorticity in hyperbolic regions around and between vortices behaves approximately
as a passive tracer. The behaviour of the structure functions quantitatively confirms
previous results obtained with a cruder clipping technique (Babiano et al. 1987).

4.2. Elliptic tracer transfers

Figure 4 shows the scale-to-scale elliptic tracer transfers, ε′
ω,θ , as a function of

length scale, obtained by the conditional averaging procedure discussed in § 3. For
comparison, we also show the elliptic transfers in the case of random fields used
as initial conditions. Transfers are normalized by (Φ0

ω + Φ0
θ )/2. As expected, elliptic

transfers are approximately zero for the random fields (small circles and triangles).
In the fully developed turbulent regime, the elliptic transfers for vorticity and passive
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Figure 3. Second-order structure functions versus length scale. Circles indicate vorticity and
triangles indicate passive tracer. Global averages are indicated by filled symbols while open
symbols indicate conditional averages obtained by excluding elliptic two-point increments.
Structure functions for vorticity are normalized by the total enstrophy, while those for passive
tracer are normalized by the total scalar variance. At small scales, the structure functions grow
quadratically as a function of scale.
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Figure 4. Elliptic scale-to-scale tracer transfers as a function of the length scale, for vorticity
(large circles), passive tracer (large triangles), and for the corresponding random fields used as
initial conditions (small circles and triangles).

tracer, ε′
ω and ε′

θ , behave very differently from each other. While the elliptic enstrophy
transfer ε′

ω is negative in the whole enstrophy inertial range (except at very small
scales), the passive-scalar transfer in elliptic regions, ε′

θ , is small and slightly positive.
As discussed above, a positive value of 〈F (x, l)〉 (see (2.8) and (2.5)–(2.6)) implies
a direct cascade from large to small scales, and a negative value of 〈F (x, l)〉 is
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Figure 5. Histograms of tracer cascade efficiency, σ , for vorticity (circles), passive tracer
(triangles): (a) unconditioned statistics, (b) Q∗ < 0 and (c) Q∗ > 0. The local cascade
efficiencies are normalized by their r.m.s. value.

associated with an inverse cascade from small to large scales. Thus, in the scale range
of the (global) direct enstrophy cascade, enstrophy and passive-tracer variance seem to
undergo different cascade processes. In elliptic domains, passive-tracer variance goes
from large to small length scales whereas enstrophy goes from small to large length
scales. That is, in elliptic domains the enstrophy cascade is reversed with respect to
the global (direct) cascade.

The inversion of the enstrophy cascade is a clear illustration of the departure
from the B-K theory. Such an inversion is consistent with the steeper slope of the
enstrophy spectral density in the wavenumber range 1 < k/kI < 5, compared to the
passive-tracer spectral density which displays a k−1 behaviour in the same spectral
range (figure 2a). It is important to emphasize that both ε′

ω and ε′
θ are positive at very

small scales, consistent with a direct cascade at the smallest scales in elliptic domains
also. This implies a positive value of σ , as defined by (2.4), and growth of gradients
close to the dissipative length scales (Lapeyre et al. 2001; Dubos & Babiano 2003).

4.3. Probability distribution of local tracer transfers at small scales

The small-scale properties of tracer transfers are captured by the one-point cascade
efficiency, σ , defined in (2.4) and in practice computed by finite differences at the
grid spacing, 
x. Figure 5 shows the histograms of σ computed in the whole
domain (a) as well as only in elliptic (b) and hyperbolic (c) regions. The global
histogram of the cascade efficiency is peaked at σ = 0, but it is asymmetric with
positive average, consistent with forward enstrophy and tracer-variance cascades.
Note, however, that the probability of occurrence of negative σ values is larger for
vorticity (circles) than for passive tracer (triangles). The same picture is observed
in elliptic (b) and hyperbolic (c) domains. The higher efficiency of direct passive-
tracer transfers, compared to vorticity transfers, has been discussed in previous
studies, see e.g. Holloway & Krismannsson (1984) and Lesieur & Herring (1985).
The form of the histograms shown in figure 5 confirms this and indicates that the
main differences between vorticity and passive-tracer dynamics arise from gradient-
decreasing processes associated with negative σ values. In any case, these differences
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Figure 6. Histograms of tracer transfers, F (x, l) for vorticity (circles) and passive tracer
(triangles): (a) Q∗ < 0, (b) Q∗ > 0. In all cases, l/ lI = 0.3. The tracer transfers are normalized
by their r.m.s. value.

are not large enough to change the positive average of the histogram even in elliptic
domains (figure 5b). This is consistent with the fact that the elliptic transfers, ε′

ω,θ , are
positive at very small scales, as shown in figure 4.

4.4. Probability distribution of local tracer transfers in the inertial range

Local transfers at larger scales in the inertial range are related to F (x, l), defined
by (2.6). Figure 6 shows the histogram of F (x, l) in elliptic (a) and hyperbolic (b)
regions. F (x, l) is sensitive to the transfer dynamics in the whole inertial range. (Note
that, at small scales, the histograms of F (x, l) and σ must be equivalent owing to the
small-scale limit (2.7). This property is satisfied in our numerical experiments (results
not shown).) The two-point separation is fixed at 6
x, where 
x is the grid spacing.
In terms of non-dimensional length scales, this corresponds to l/ lI ≈ 0.3, where the
elliptic enstrophy transfer is negative (see figure 4).

Figure 6(a) shows that elliptic regions are characterized by a more frequent
occurrence of negative (inverse) enstrophy transfers. This leads to a negative average
of the histogram of enstrophy transfers in elliptic domains and it indicates the
presence of a (local) inverse enstrophy cascade in the inertial range. Nothing like
this is observed for the passive tracer, which displays a symmetric distribution. On
the other hand, vorticity and passive tracer display similar histograms in hyperbolic
domains (figure 6b). Here, the average is always positive, consistent with a direct
(forward) cascade for both active and passive tracers.

4.5. Identification of the structures responsible for the inverse enstrophy cascade

The results discussed until now do not allow unambiguous determination of the
structures responsible for the anomalous backward enstrophy cascade. Elliptic regions
include both vortex cores and vorticity filaments in the background, and at this point
it is not clear which of these structures is responsible for the inverse enstrophy cascade.
In addition to the selection criterion based on the value of Q∗, we further partition
the set of elliptic regions, based on their average squared vorticity. A conditional
average of F (x, l) over the domains defined by the double constraint on Q∗ and ω2

gives a new estimate of ε′
ω, which must be compared to the global elliptic contribution

displayed in figure 4.
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Figure 7. Vorticity field (d) and spatial distribution of elliptic domains associated with
different vorticity levels. (a) Q∗ < 0 and ω2 > 4Z, (b) Q∗ < 0 and ω2 > Z, (c) Q∗ < 0.

Figure 7 shows the vorticity field (panel d) and the elliptic domains corresponding to
different vorticity levels (panels a, b, c). The selection of elliptic domains corresponds
to the constraints: (a) Q∗(x) < 0 and ω2(x) > 4Z where Z is the globally averaged
enstrophy; (b) Q∗(x) < 0 and ω2(x) > Z; and (c) all elliptic domains, Q∗(x) < 0.
Case (a) basically captures the cores of the vortices.

The elliptic enstrophy transfers associated with the different domains are shown
in figure 8. For the vortex cores (dashed line), the elliptic enstrophy transfers are
negative. However, they remain rather small except at length scales of the order of
the injection scale lI , that approximately determines the scale of the larger vortices.
As the threshold for ω2 decreases, the elliptic domains become more fragmented
and are composed of clusters of small-scale elliptic patches and vorticity filaments
with characteristic size smaller than the vortex size (figure 7c). The corresponding
elliptic transfers (continuous line in figure 8) become closer to the estimate for the
whole set of elliptic regions (circles). This indicates that the main contribution to the
anomalous backward enstrophy cascade arises from fragmented elliptic patches and
vorticity filaments around and between the coherent vortices.
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Figure 8. Elliptic enstrophy transfers as a function of length scale for the partitioning criteria
based on the values of Q∗ and ω2. The circles indicate the case Q∗ < 0, the continuous line
indicates Q∗ < 0 and ω2 > Z, and the dashed line indicates Q∗ < 0 and ω2 > 4Z, where Z is
the globally averaged enstrophy.

5. Links with energy transfers
Clusters of small-scale elliptic patches with same-sign vorticity often participate

in aggregation processes that lead to the formation of larger-scale structures (Paret
& Tabeling 1998; Babiano & Dubos 2005). As the merging of same-sign coherent
vortices is one component of the inverse energy cascade at large scales, we speculate
that the aggregation of the small-scale elliptic patches in the enstrophy inertial range
is an elementary mechanism of small-scale backward energy cascade. If this picture
is correct, then in small-scale clusters of elliptic patches both the energy and the
enstrophy cascades are directed towards larger scales. The inverse enstrophy cascade
should thus be associated with smoothing of vorticity gradients and growth of larger-
scale motions.

5.1. Elliptic enstrophy transfer and gradient-decreasing processes

First we need to verify whether inverse enstrophy transfers in elliptic regions are
associated with smoothing of vorticity gradients. To this end, we compare the mean
conditional scale-to-scale transfers, ε′

ω(Q∗) and ε′
θ (Q

∗), to the sign of the two-point
cascade efficiencies σ+

l and σ −
l for different separations in the inertial range.

Figure 9 shows the conditional transfers for the passive tracer (panel a) and for
vorticity (panel b) as a function of Q∗, at different values of the separation scale l.
The total transfers, ε′

ω,θ (Q
∗), at any value of Q∗ are defined as the sum of the two

contributions corresponding to σ+
l and σ −

l .
In hyperbolic regions (Q∗ > 0), the total vorticity and passive-tracer transfers are

always positive, consistent with a direct cascade towards small scales. The hyperbolic
transfers are dominated by the contribution of σ+

l , and are thus associated with
gradient growth. The hyperbolic transfers associated with σ −

l are approximately zero.
In elliptic regions (Q∗ < 0), the situation is more complicated. At small scales,

elliptic transfers are positive for both vorticity and passive tracer, as expected from the
results discussed above. At larger scales, the elliptic transfers for vorticity and passive
tracer become different. The total elliptic passive-tracer transfers are approximately
zero, whereas elliptic enstrophy transfers grow with the length scales and become
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Figure 9. Different contributions to tracer transfers as a function of Q∗, for a passive tracer
(a) and for vorticity (b). The continuous line indicates the global transfers, the + symbols
indicate the σ+ contributions and the − symbols indicate the σ −. From top to botton:
l/
x = 2, 4, 8, 12, where 
x is the grid spacing.

negative (backward cascade). At the largest length scales analysed, we see that only
gradient-decreasing structures characterized by σ −

l contribute to the elliptic enstrophy
transfers. This behaviour is not present in the passive-tracer transfer dynamics. These
results confirm that the inverse enstrophy transfers detected in elliptic regions are
associated with gradient-decreasing processes.

5.2. Gradient-decreasing processes and inverse energy transfer

Figure 10 shows the histograms of the third-order moment of velocity increments,
((l/l · δu) (δu · δu)), computed for σ+

l and σ −
l in elliptic regions where Q∗ < 0. The

sign of the third-order moment of the velocity increments characterizes the direction
of energy transfers: the third-order moment is positive for inverse energy transfers
and negative for direct energy transfers (Babiano & Dubos 2005).

The histograms shown in figure 10 exhibit opposite asymmetries: the third-order
moments of velocity increments associated with σ+

l contributions have negative mean
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Figure 10. Histograms of third-order moments of velocity increments in elliptic regions, for
σ+

l (+) and σ −
l (−); l = 12
x.

and are characterized by higher efficiency of direct transfers, whereas those associated
with σ −

l contributions are characterized by a positive mean and by the presence of
significant inverse transfers towards large scales. Thus, in small-scale elliptic patches
there is a close link between smoothing of vorticity gradients (associated with σ −

l ) and
backward energy cascades. Conversely, the growth of vorticity gradients is associated
with a direct cascade of energy from large to small scales. The behaviour in gradient-
decreasing, elliptic regions contradicts the global balance (2.9), as both enstrophy and
energy are transferred in the same direction.

In terms of geometrical alignment properties, the above results indicate that in
small-scale elliptic patches the two backward cascades should lead to a statistical
anticorrelation between ∇ω and the stretching direction due to the larger-scale strain
field. Unfortunately, a direct estimate of the alignment properties can be difficult,
as the limits of the numerical resolution and the application of low-pass filtering
precedures can hamper the detection of alignment properties at the filter scale (Protas
et al. 1999, see also Dubos & Babiano 2002).

5.3. Link between enstrophy and energy cascades

As a last step in the analysis, we verify the validity of relationship (2.13) for the global
averages and for the conditional averages in the elliptic and hyperbolic domains of the
turbulent flow. Figure 11 displays global statistics for the third-order velocity moments,
〈δu‖δu‖δu‖〉 (continuous line) and 〈δu‖δu⊥δu⊥〉 (dashed line), and for the compensated
vorticity increments, −l2〈δω2δu‖〉/16 (circles). If relationship (2.13) holds, then these
quantities should be equal and scale as l3. Figure 11 shows that for global averages,
relationship (2.13) is verified at intermediate scales in the enstrophy cascade range. In
terms of global transfer dynamics, this is consistent with a direct enstrophy cascade
towards small scales, which is balanced by a scale-dependent inverse energy transfer
towards large scales.

Figure 12 shows the mean conditional transfer in elliptic regions, ε′′
‖ = δu‖δu‖δu‖/l3

(continuous line), ε′′
⊥ = δu‖δu⊥δu⊥/l3 (dashed line) and ε′′

ω = −δω2δu‖/(16 l) (circles),
further constrained on σl: panel (a) shows elliptic transfers for σ −

l and panel (b) for
σ+

l . All quantities have been normalized by the mean transfer rate in the enstrophy
inertial range.
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Figure 11. Third-order moments of longitudinal (continuous line) and transverse (dashed
line) velocity increments and of compensated vorticity increments (circles), as a function of
length scale. The thick straight line indicates the l3 behaviour.
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Figure 12. Elliptic transfers ε′′
‖ (continuous line), ε′′

⊥ (dashed line) and ε′′
ω (circles) as a function

of length scale: (a) σ −
l , corresponding to gradient-decreasing regions, (b) σ+

l , corresponding to
gradient-increasing regions.

As a first observation, we note a significant difference between ε′′
‖ and ε′′

⊥ in elliptic

domains, compared to their global averages (2.13) shown in figure 11. The magnitude
of ε′′

ω is comparable with that of ε′′
‖ , as predicted by the global budget, while it is

about 4–5 times smaller than ε′′
⊥. However, for σ −

l the sign of ε′′
ω is opposite to that

of ε′′
‖ and ε′′

⊥.

By virtue of (2.13), the global budget in the enstrophy inertial range is guaranteed
by the relationship between the direct enstrophy transfer towards small scales
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(negative 〈δω2δu‖〉/(16l)) and the inverse energy transfer towards large scales (positive
〈δu‖δu‖δu‖〉/l3 and 〈δu‖δu⊥δu⊥〉/l3). The results shown in figure 12 indicate that this
global balance does not hold separately in different topological regions. In elliptic
regions characterized by gradient-decreasing structures, both the enstrophy and the
energy cascades are inverse. In gradient-increasing regions, the enstrophy cascade is
direct, but relation (2.13) does not necessarily hold. Only when globally averaged, do
the two cascades obey (2.13).

6. Summary and conclusions
The present work was stimulated by a number of open questions concerning

vorticity and passive-tracer dynamics in two-dimensional turbulence. We have
reconsidered the main physical features of the enstrophy and passive-tracer cascades
and focused on small-scale gradient alignment properties and scale-to-scale enstrophy
and tracer-variance transfers in the whole inertial range of the enstrophy cascade. We
have quantitatively confirmed and substantiated the suggestion of Ohkitani (1991) on
the existence of inverse enstrophy transfers in the elliptic domains of two-dimensional
turbulence.

The main results of our numerical exploration can be summarized as follows:
(i) Enstrophy and passive-tracer variance undergo different inertial-range cascade

processes in elliptic regions: here, passive-tracer variance goes from large to small
scales whereas enstrophy goes from small to large scales. The main contribution to the
inverse enstrophy cascade comes from small elliptic patches and vorticity filaments
outside coherent vortices. The inversion of the enstrophy cascade in the inertial range
is neglected in self-similarity theories and it could explain the fact that the observed
enstrophy spectra are steeper than k−1.

(ii) Probability distributions of scale-to-scale transfers in the inertial range show
that the dominant contribution to the inverse enstrophy cascade in elliptic domains
comes from gradient-decreasing structures.

(iii) The study of third-order moments of velocity increments shows that gradient-
decreasing structures in elliptic domains are characterized by inverse energy and
enstrophy transfers that do not obey (2.13). On the other hand, this relationship is
verified by the global averages.

(iv) At very small scales, both the enstrophy and passive-tracer variance transfers
are positive, for both elliptic and hyperbolic regions. This is consistent with gradient
growth at the smallest scales in the enstrophy range. This may explain why diagnostics
based on local gradient dynamics indicate a similarity of active- and passive-tracer
cascades even in elliptic domains.

The inversion of the enstrophy cascade in elliptic, gradient-decreasing patches seems
to be the main difference between vorticity and passive-tracer dynamics. As noticed
by Ohkitani (1991), the inversion of the enstrophy cascade can be the consequence
of the interaction between coherent vortices of size close to the forcing scale, see
also Babiano et al. (1987). Our results reveal that the inversion of the enstrophy
cascade takes place on scales that are definitely smaller than the forcing scale lI .
In our numerical simulations, the inverse enstrophy transfer is especially evident for
l/ lI > 0.2, a range that corresponds to wavenumbers k/kI � 5 where the vorticity
and passive-tracer spectra have different slopes. The inverse enstrophy transfer taking
place in elliptic patches could be one of the basic processes associated with the
formation of coherent vortices in forced two-dimensional turbulence.
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